Notch4-induced inhibition of endothelial sprouting requires the ankyrin repeats and involves signaling through RBP-Jkappa.

نویسندگان

  • Farrell MacKenzie
  • Patrick Duriez
  • Bruno Larrivée
  • Linda Chang
  • Ingrid Pollet
  • Fred Wong
  • Calvin Yip
  • Aly Karsan
چکیده

Notch proteins comprise a family of transmembrane receptors. Ligand activation of Notch releases the intracellular domain of the receptor that translocates to the nucleus and regulates transcription through the DNA-binding protein RBP-Jkappa. Previously, it has been shown that the Notch4 intracellular region (N4IC) can inhibit endothelial sprouting and angiogenesis. Here, N4IC deletion mutants were assessed for their ability to inhibit human microvascular endothelial cell (HMEC) sprouting with the use of a quantitative endothelial sprouting assay. Deletion of the ankyrin repeats, but not the RAM (RBP-Jkappa associated module) domain or C-terminal region (CT), abrogated the inhibition of fibroblast growth factor 2 (FGF-2)- and vascular endothelial growth factor (VEGF)-induced sprouting by Notch4, whereas the ankyrin repeats alone partially blocked sprouting. The ankyrin repeats were also the only domain required for up-regulation of RBP-Jkappa-dependent gene expression. Interestingly, enforced expression of the ankyrin domain alone was sufficient to up-regulate some, but not all, RBP-Jkappa-dependent genes. Although N4IC reduced VEGF receptor-2 (VEGFR-2) and vascular endothelial (VE)-cadherin expression, neither of these events is necessary and sufficient to explain N4IC-mediated inhibition of sprouting. A constitutively active RBP-Jkappa mutant significantly inhibited HMEC sprouting but not as strongly as N4IC. Thus, Notch4-induced inhibition of sprouting requires the ankyrin repeats and appears to involve RBP-Jkappa-dependent and -independent signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation.

Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form...

متن کامل

Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro.

Vascular smooth muscle cell (VSMC) phenotypic modulation is a key factor in vascular pathology. We have investigated the role of Notch receptor signaling in controlling human vascular smooth muscle cell (hVSMC) differentiation in vitro and established a role for cyclic strain-induced changes in Notch signaling in promoting this phenotypic response. The expression of alpha-actin, calponin, myosi...

متن کامل

Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis.

The transcription factor recombination signal sequence-binding protein Jkappa (RBP-J) is a key downstream element in the signaling pathway of all four mammalian Notch receptors that are critically involved in the control of embryonic and adult development. RBP-J-deficient mice display complex defects and die around day 9.5 postcoitum. Here, we investigate the function of RBP-J in the developmen...

متن کامل

Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity

BACKGROUND In the vasculature, Notch signaling functions as a downstream effecter of Vascular Endothelial Growth Factor (VEGF) signaling. VEGF regulates sprouting angiogenesis in part by inducing and activating matrix metalloproteases (MMPs). This study sought to determine if VEGF regulation of MMPs was mediated via Notch signaling and to determine how Notch regulation of MMPs influenced endoth...

متن کامل

The N- and C-terminal regions of RBP-J interact with the ankyrin repeats of Notch1 RAMIC to activate transcription.

The evolutionarily-conserved DNA-binding protein RBP-J directly interacts with the RAM domain and the ankyrin (ANK) repeats of the Notch intracellular region (RAMIC), and activates transcription of downstream target genes that regulate cell differentiation. In vitro binding assays demonstrate that the truncated N- and C-terminal regions of RBP-J bind to the ANK repeats but not to the RAM domain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 104 6  شماره 

صفحات  -

تاریخ انتشار 2004